If it's not what You are looking for type in the equation solver your own equation and let us solve it.
105x^2+96x-56=0
a = 105; b = 96; c = -56;
Δ = b2-4ac
Δ = 962-4·105·(-56)
Δ = 32736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32736}=\sqrt{16*2046}=\sqrt{16}*\sqrt{2046}=4\sqrt{2046}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-4\sqrt{2046}}{2*105}=\frac{-96-4\sqrt{2046}}{210} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+4\sqrt{2046}}{2*105}=\frac{-96+4\sqrt{2046}}{210} $
| -4(3a=-7) | | 1x+1x+50=120 | | 9x—11-3x-13=0 | | -3(7n-4)=-36-5n | | 2z+8/3=(z/4)+5 | | .4x=-6.4 | | 6(x+3)-4=x+9-10 | | 12(x-3)+18=6(20-3) | | -5x+2=13x+-160 | | -2b+5=-2(b+2)+7 | | 2x+3x+5=5x+5 | | H+£=y | | -8x+12=-5(8x+4) | | 321321+344.5x=333.64 | | 1/2(3w-8)=25 | | 49=11-2(8+3x) | | 2x16=21-7 | | -81=-41-9n | | 3(x-5)-10=2x-17 | | 3x(5x÷30)×2=7x+60 | | –19j+8j+–4=18 | | 12=17-p | | .7x+.2(40)=0.5(x+20) | | 5y+2+2y+9=12y-9 | | 6(x-9)=6x | | -(x+3)+3x=2(x+3) | | 15x+9=-2x+128 | | x-62=-40 | | -2(2-6n)+6n=9n-4 | | 6=50h-20 | | -r-26=-2(8+3r) | | x-35=17.5 |